Convex Combination Inequalities of the Line and Plane
نویسندگان
چکیده
منابع مشابه
Optimal Inequalities for the Convex Combination of Error Function
For λ ∈ (0,1) and x,y > 0 we obtain the best possible constants p and r , such that erf(Mp(x,y;λ)) λ erf(x)+(1−λ) erf(y) erf(Mr(x,y;λ)) where erf(x) = 2 √π ∫ x 0 e −tdt and Mp(x,y;λ) = (λxp + (1− λ)yp)1/p(p = 0) , M0(x,y;λ) = xλ y1−λ are error function and weighted power mean, respectively. Furthermore, using these results, we generalized and complement an inequality due to Alzer.
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn a Convex Combination of Solutions to Elliptic Variational Inequalities
Let ugi the unique solutions of an elliptic variational inequality with second member gi (i = 1, 2). We establish necessary and sufficient conditions for the convex combination tug1 + (1 − t)ug2 , to be equal to the unique solution of the same elliptic variational inequality with second member tg1 + (1− t)g2. We also give some examples where this property is valid.
متن کامل(m1,m2)-AG-Convex Functions and Some New Inequalities
In this manuscript, we introduce concepts of (m1,m2)-logarithmically convex (AG-convex) functions and establish some Hermite-Hadamard type inequalities of these classes of functions.
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/916243